Join Your Exam WhatsApp group to get regular news, updates & study materials HOW TO JOIN

KARNATAKA class 11 commerce Informatics Practices fast track revision notes

KARNATAKA class 11 commerce Informatics Practices fast track revision notes

KARNATAKA class 11 commerce Informatics Practices fast track revision notes:- we will provide complete details KARNATAKA class 11 commerce Informatics Practices fast track revision notes in this article.

KARNATAKA class 11 commerce Informatics Practices fast track revision notes

KARNATAKA class 11 commerce Informatics Practices fast track revision notes

Learning Objectives

  • To gain working knowledge of a computer system and peripherals
  • To understand the application development process.
  • To gain programming skills in front-end development
  • To gain skills in Database Creation and querying using ANSI SQL.
  • To design, program and develop database driven web applications using GUI Programming Tool and RDBMS.
  • To understand and appreciate open source and open standard concepts

Competencies

  • Sound knowledge of computer system
  • Familiarity with Application Development process using simple IDEs
  • Ability to use, develop & debug programs independently.
  • Ability to use ANSI SQL for storing and retrieving data from the RDBMS.
  • Ability to develop a Web Application using Front end and Back end tools.

KARNATAKA class 11 commerce Informatics Practices fast track revision notes

Informatics Practices for Class XI /Computer System Organization

From the dawn of time, human beings have always tried to find new ways to solve problems, be more productive, work with numbers faster, and have better ways of storing information. Possibly early humans used stones to count items, which lead to the abacus, then to the slide-rule, and then later calculators. These machines allowed human beings to do these things faster and better than they could do them in their minds.

KARNATAKA class 11 commerce Informatics Practices fast track revision notes:-Early Computers

The Mechanical Age

Since the early ages of computer history there has been innovations that have led to the advancement of technology. The first computers were mechanical, and sometimes prone to errors. They were calculating machines. Blaise Pascal built a numerical wheel adding machine in 1642 in order to help out his father, who was a tax collector. It was a heavy burden to add numbers by hand, and Pascal had seen it as a chance to relieve that burden.

In 1673 Gothfried Willhelm von Leibniz, a German mathematician, built a calculator device that could add, subtract, multiply, and divide. It provided more functions than Pascal’s machine and allowed users of it to solve more problems. Yet both Pascal’s and Leibniz’s machines were not totally dependable and suffered from flaws.

Mechanical Innovations

Joseph Jacquard, a French weaver, designed a punch card loom in 1805. A chain of punch cards in an certain order, provided instructions for the loom to control it. This allowed patterns in the weave as the machine weaved threads. The pattern could be changed by changing the cards used to different cards. This later lead to storing computer instructions on these cards.

Charles Xavier Thomas, another Frenchman, worked on a new mechanical computer. He called it the four-function machine and it was more reliable than Pascal’s or Leibniz’s machines. This was in 1820 as technology had progressed, and Thomas learned from Pascal’s and Leibniz’s works and flaws.

Larger Scale Mechanical Computers and Logic

Charles Babbage and Ada Lovelace made contributions since 1842. The Difference Engine, the machine that became the template for the Analytic Engine, was an automatic logarithm tabulator and printer. It had a memory unit, automatic printout, sequential program control and punch-card input. The punch card idea was borrowed from Jacquard’s loom.

Babbage had worked with computers for 20 years with the British government, and the government was threatening to withdraw funds because it had nothing to show for its investments. The project needed someone new to help out, and enter Ada Lovelace, daughter of Lord Byron and Lady Annabella Milbanke. Lovelace corrected some of Babbage’s mistakes in the instructions and became the world’s first debugger. It was a milestone for women in computer history. Lovelace suggested a binary system of numbers be used, which set the standard of future computers to use.

Sadly the Difference Engine did not function properly. The technology to create proper gears and shafts was not good enough to provide accuracy. Yet it helped pave the way for future computers. Later the IBM Corporation was able to build a working model of the Difference Engine using more modernized parts.

KARNATAKA class 11 commerce Informatics Practices fast track revision notes:-Early Programming Languages

The first version of a programming language arose from work by Ada Lovelace, the benefactor and business partner of Charles Babbage. Unfortunately her work went mostly ignored since Babbage never built a completed Analytical Engine so there was no public deployment. She is remembered in the programming language still in use on military-grade projects, Ada.

Wiring and Raw Binary

Early work with analog and Electro mechanical computers did not involve programming languages the way we know them. Since early computers needed to be wired directly for each problem set, the process of setting plugs took the place of having a text-based distillation of an algorithm.

As electro mechanical machinery gave way to mercury delay lines and drum memory, it became possible to write directly to addresses in memory and provide instructions without rewiring. This typically meant writing what we would call “machine code”. This often gets called “hex” today, as modern 32-bit and 64-bit microprocessor systems read binary data in 8 or 16 hexadecimal chunks per clock cycle.

Writing code at the machine level is difficult: it requires that the programmer know the specific locations for registers in hardware and the instruction set for the processor. Reading machine code is often more difficult than writing it, thus tracking code changes is nearly impossible for a human.

Assembly

The first upgrade to the machine code level of programming was assembly language. This provided a way to write machine code with string manipulators and names for instructions instead of the raw binary versions. It can still be difficult to read and still requires knowing which instructions and register locations exist, but it can be read on paper or screen and assembled into machine code cycle by cycle.

Assembly programming has not gone away. Most device drivers for computer peripherals are written in C code, but some real-time glitches are best resolved by hand optimizing the mid-step assembly output from the C compiler. This is becoming increasingly rare.

FORTRAN

FORTRAN Stands for FORmula TRANslation. This language was invented at IBM in the mid-1950s for the IBM 704 series computer.

BASIC

BASIC stands for Beginners All Purpose Symbolic Instruction Code

In computer programming, BASIC (an acronym for Beginner’s All-purpose Symbolic Instruction Code[1]) refers to a family of high-level programming languages. It was originally designed in 1963, by John George Kemeny and Thomas Eugene Kurtz at Dartmouth College, to allow students not in science fields to use computers. At the time all computer use required writing custom software, which was something only scientists and mathematicians tended to do. It became widespread on home microcomputers in the 1980s, and remains popular to this day in a handful of heavily evolved dialects.

COBOL

COBOL, an acronym that stands for COmmon Business Oriented Language, is a high-level programming language developed in the 1960s and still used in business applications. It is used extensively in the financial services industry for large scale mainframe based applications. It uses instructions resembling English statements and imposes an overall framework for a program. The design goal for COBOL was a language that self-documented so that it could be revised and maintained easily.

PL/1

Programming Language 1 is a high-level programming language designed for scientific, engineering, and business applications. It is one of the most feature-rich programming languages and one of the very first in the highly-feature-rich category. It has been used by various academic, commercial and industrial users since it was introduced in the early 1960s, and is still actively used today. It supports recursion and structured programming. The language syntax is English-like and suited for describing complex data formats, with a wide set of functions available to verify and manipulate them.

KARNATAKA class 11 commerce Informatics Practices fast track revision notes:-Operating system ‘wars’

When the PC was introduced, it needed an operating system. IBM approached a company named Digital Research, which was owned by Gary Kildall. IBM sought the use of Digital Research’s CP/M, a popular operating system in earlier systems. (It was, in fact, the first operating system that wasn’t hardware-specific.) IBM did not want to pay royalties, however, but sought a one time purchase, which included a rename. Digital Research refused, and IBM withdrew. They then approached Microsoft and Bill Gates, who purchased an existing operating system (Seattle Computer Company’s 86-DOS) and renamed it MS-DOS. This name was later used on non-IBM models; Microsoft agreed to IBM’s desire to use their own name, and the operating system was sold as PC-DOS on the PC.

86-DOS was modeled after CP/M, and Digital Research filed legal action for patent infringement. IBM settled by offering computer buyers a choice of either; however, CP/M-86 (as the PC version was named) cost almost $200 more than PC-DOS, and it did not sell well.

MS/PC-DOS quickly became the standard for the PC-compatible market. Digital Research would attempt to regain the market, eventually settling on an MS-DOS clone, DR-DOS. DR DOS was sold off the shelf (while MS/PC-DOS was only sold bundled with new computers), and would later gain a large market share with version 5, which had new memory management that broke down an early limitiation of DOS, a maximum usable memory of 640 kB.

By this time, Microsoft was holding the market not only with MS-DOS, but Microsoft Windows, a graphical shell program for DOS. Windows was based on the Macintosh, and Apple filed suit. Complicating the matter was a suit against Apple by Xerox, claiming that Xerox was the rightful owner of the design. Eventually, it was ruled that the design factors in question could not be copyrighted, and Macintosh and Windows continued to coexist.

In 1995, Windows was re-worked to be a self contained operating system, Windows 95. By this time, DR-DOS had been sold twice, becoming Novell DOS 7, then Caldera DR-DOS 7. IBM had also split from Microsoft and was developing PC-DOS 6 separately. The new version of Windows that didn’t coexist with DOS was ultimately the focus of an anti-trust lawsuit against Microsoft. Despite this, Microsoft was able to continue developing Windows.

Today, the market is dominated by the IBM PC-compatible computer, the majority of which run Microsoft Windows. Also present is an up-and-coming system, Linux, which is an open source system based on UNIX (an alternate PC-compatible system dating to the late 1970s; it was more complex and used for industrial, rather than home, use). On a separate platform, the Apple Macintosh also exists, running the newest Apple operating system, Mac OS X.

  • OS2/ WARP

KARNATAKA class 11 commerce Informatics Practices fast track revision notes

Hope you find it useful. To get more updates and information about the concerned doubts you have please write to us. Visit our site CAKART.in for more useful and valuable articles.

Recommended post :-KARNATAKA class 11 commerce Informatics Practices fast track revision notes

KARNATAKA class 11 commerce Informatics Practices fast track revision notes

CAKART provides India’s top class XI commerce  faculty video classes – online Classes – at very cost effective rates. Get class XI commerce Video classes from CAKART.in to do a great preparation for your exam.

Watch class XI commerce Economics sample video lectures 
Watch class XI commerce Accounting Sample video lecture Visit cakart.in
Watch class XI commerce Mathematics Sample video lecture Visit cakart.in
For any questions chat with us by clicking on the chat button below or give a missed call at 9980100288

Leave a comment

Your email address will not be published. Required fields are marked *